Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.

نویسندگان

  • Seiji Kojima
  • Yukio Furukawa
  • Hideyuki Matsunami
  • Tohru Minamino
  • Keiichi Namba
چکیده

MotA and MotB are integral membrane proteins that form the stator complex of the proton-driven bacterial flagellar motor. The stator complex functions as a proton channel and couples proton flow with torque generation. The stator must be anchored to an appropriate place on the motor, and this is believed to occur through a putative peptidoglycan-binding (PGB) motif within the C-terminal periplasmic domain of MotB. In this study, we constructed and characterized an N-terminally truncated variant of Salmonella enterica serovar Typhimurium MotB consisting of residues 78 through 309 (MotB(C)). MotB(C) significantly inhibited the motility of wild-type cells when exported into the periplasm. Some point mutations in the PGB motif enhanced the motility inhibition, while an in-frame deletion variant, MotB(C)(Delta197-210), showed a significantly reduced inhibitory effect. Wild-type MotB(C) and its point mutant variants formed a stable homodimer, while the deletion variant was monomeric. A small amount of MotB was coisolated only with the secreted form of MotB(C)-His(6) by Ni-nitrilotriacetic acid affinity chromatography, suggesting that the motility inhibition results from MotB-MotB(C) heterodimer formation in the periplasm. However, the monomeric mutant variant MotB(C)(Delta197-210) did not bind to MotB, suggesting that MotB(C) is directly involved in stator assembly. We propose that the MotB(C) dimer domain plays an important role in targeting and stable anchoring of the MotA/MotB complex to putative stator-binding sites of the motor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor

The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30-50), a stalk (51-100) and a C...

متن کامل

Structure and Function of the Bi-Directional Bacterial Flagellar Motor

The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electroche...

متن کامل

Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor

The bacterial flagellar motor generates torque by converting the energy of proton translocation through the transmembrane proton channel of the stator complex formed by MotA and MotB. The MotA/B complex is thought to be anchored to the peptidoglycan (PG) layer through the PG-binding domain of MotB to act as the stator. The stator units dynamically associate with and dissociate from the motor du...

متن کامل

Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition.

The stator ring of the bacterial flagellar motor is composed of the MotA and MotB proteins that act together to generate a turning force (torque) acting on the FliG ring of the rotor. The C-terminal domain of MotB (MotB-C) is believed to anchor the MotA/MotB complex to peptidoglycan (PG) of the cell wall. The first crystal structures of MotB-C and its complex with N-acetylmuramic acid (NAM) hav...

متن کامل

The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium

Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 9  شماره 

صفحات  -

تاریخ انتشار 2008